Source: Martha Skup (2010)
Source: Lindquist (2008) and Adali at. el (2011)
... the most common software packages for fMRI analysis can result in false-positive rates of up to 70% --- Eklund et al. (PNAS 2016)
... the most common software packages for fMRI analysis can result in false-positive rates of up to 70% --- Eklund et al. (PNAS 2016)
Can we make use of full information of CV-fMRI while keep the advantages of Bayesian nature?
... the most common software packages for fMRI analysis can result in false-positive rates of up to 70% --- Eklund et al. (PNAS 2016)
Can we make use of full information of CV-fMRI while keep the advantages of Bayesian nature?
Source: https://blog.applysci.com
Propose
Propose
From Rowe and Logan (2004), for time t=1:T, voxel v=1:V and p tasks, yvt=ρvtcos(ϕv)+iρvtsin(ϕv)+ηvt,ρvt=βv0+βv1x1,t+⋯+βvpxp,t
From Rowe and Logan (2004), for time t=1:T, voxel v=1:V and p tasks, yvt=ρvtcos(ϕv)+iρvtsin(ϕv)+ηvt,ρvt=βv0+βv1x1,t+⋯+βvpxp,t
⎡⎢ ⎢⎣yv1⋮yvT⎤⎥ ⎥⎦=⎡⎢ ⎢ ⎢⎣1x11⋯xp1⋮⋮⋱⋮1x1T⋯xpT⎤⎥ ⎥ ⎥⎦⎡⎢ ⎢ ⎢ ⎢ ⎢⎣βv0cos(ϕv)+iβv0sin(ϕv)⋮βvpcos(ϕv)γvRe+iβvpsin(ϕv)γvIm⎤⎥ ⎥ ⎥ ⎥ ⎥⎦+⎡⎢ ⎢⎣ηv1⋮ηvT⎤⎥ ⎥⎦
yv=Xγv+ηv, ηv∼CNT(0,Γv,Cv)
or equivalently, yvr=Xrγvr+ηvr, where ηvr∼N2T(0,Σv)
yv=Xγv+ηv, ηv∼CNT(0,Γv,Cv)
or equivalently, yvr=Xrγvr+ηvr, where ηvr∼N2T(0,Σv)
Source: Lindquist (2008)
γvj≠0 iff voxel v at task j is activated (Xia, Liang, and Wang (2009); Zhang, Guindani, and Vannucci (2015)).
Complex normal spike-and-slab prior γvj∼(1−ψvj)CN(0,ω0,λ0)spike+ψvjCN(0,ω1,λ1)slab, ω0<ω1∈C,λ0<λ1∈C.
Active voxel: ψvj=1⇒γvj≠0
Activation is inferred by borrowing information across voxels through a Bernoulli prior on ψvj with a common probability of activation for all voxels: ψvj∼Bernoulli(θvj=θj), i.e., Pr(ψvj=1∣θj)=θj.
yv=Xγv+ηv,ηv∼CNT(0,2σ2vI,0),v=1:V,γvj∣ψvjindep∼(1−ψvj)CN1(0,σ2vω0,σ2vλ0)+γvjCN1(0,σ2vω1,σ2vλ1),ω0<<ω1,λ0<<λ1,j=1:p,ψvj∣θjIID∼Bernoulli(θj),θjIID∼Beta(aθ,bθ),σ2v∼IG(aσ,bσ)
yv=Xγv+ηv,ηv∼CNT(0,2σ2vI,0),v=1:V,γvj∣ψvjindep∼(1−ψvj)CN1(0,σ2vω0,σ2vλ0)+γvjCN1(0,σ2vω1,σ2vλ1),ω0<<ω1,λ0<<λ1,j=1:p,ψvj∣θjIID∼Bernoulli(θj),θjIID∼Beta(aθ,bθ),σ2v∼IG(aσ,bσ)
Pr(ψvj=1∣γ(l),θ(l),σ(l),y)
γ(l+1),θ(l+1),σ(l+1)=maxargEψ|⋅[logπ(γ,ψ,θ,σ∣y)∣γ(l),θ(l),σ(l),y]
yv=Xγv+ηv,ηv∼CNT(0,2σ2vI,0),v=1:V,γvj∣ψvjindep∼(1−ψvj)CN1(0,σ2vω0,σ2vλ0)+γvjCN1(0,σ2vω1,σ2vλ1),ω0<<ω1,λ0<<λ1,j=1:p,ψvj∣θjIID∼Bernoulli(θj),θjIID∼Beta(aθ,bθ),σ2v∼IG(aσ,bσ)
^γvRe=(X′X+2Dv)−1(X′yv)Re,^γvIm=(X′X+2Dv)−1(X′yv)Im.
yvt=γv1+γv2t/T+γv3xt+ηvt,ηvt=φvηvt−1+ζvt,ζvtiid∼CN1(0,2σ2v,0),φv∼Uniform(−1,1).
Given a kernel k(z;ϕ),z∈S and a white noise process w(u),u∈S, the kernel convolution is S(z)=∫Sk(z−u;ϕ)w(u)du.
In practice, for sites u1,...,uD, the process is defined as S(z)=D∑d=1k(z−ud;ϕ)w(ud)
The spatial process S(z) governs the spatial dependence of voxels in the image, and affects the probability of voxels being activated.
Dimension reduction: A small number D of parameters w(u1),...,w(uD) governs the entire process S(z) that may have tons of measurements at location z1,...,zV. (V>>D).
S=(S(z1),...,S(zV))′ is the voxel-level spatial effects
w=(w(u1),...,w(uD))′ is the D-dimensional latent spatial effect formed by the selected D sites.
KC
GP
KC
GP
D≠G but we use D=G for comparison.
KC
GP
where Λv is the AR(1) correlation matrix.
where Λv is the AR(1) correlation matrix.
Empirical Bayes estimator ^ρv (^Λv) for AR coefficient for computation efficiency.
Complex-valued g-prior on γv: γv(ψv)∣ψv,σ2vind∼CNp(^γv(ψv),2Tσ2v(X′(ψv)^Λ−1vX(ψv))−1,0)^γv(ψv)=(X′(ψv)^Λ−1vX(ψv))−1X′(ψv)yv
Integrate γv out for faster computation.
KC
π(ψ(j)∣∣S(j))=V∏v=1π(ψvj∣∣Svj) ψvj∣∣Svjind∼Bernoulli⎛⎝11+e−(adj+Svj)⎞⎠ Svj=D∑d=1k(zv−sd;ϕd)wdj
wdj∣τ2jind∼N(0,τ2j) τ2jiid∼IG(aτ,bτ) ϕdiid∼Ga(aϕ,bϕ)
KC
π(ψ(j)∣∣S(j))=V∏v=1π(ψvj∣∣Svj) ψvj∣∣Svjind∼Bernoulli⎛⎝11+e−(adj+Svj)⎞⎠ Svj=D∑d=1k(zv−sd;ϕd)wdj
wdj∣τ2jind∼N(0,τ2j) τ2jiid∼IG(aτ,bτ) ϕdiid∼Ga(aϕ,bϕ)
GP
π(ψ(j)∣∣S(j))=G∏g=1∏v∈Rgπ(ψvj∣∣Sgj) ψvj∣∣Sgjind∼Bernoulli⎛⎝11+e−(agj+Sgj)⎞⎠ S(j)∣∣δ2j,rjind∼N(0,δ2jΓj) Γj(i,k)=exp(−||si−sk||rj) π(δ2j)∝δ−2j rj∼Ga(aj,bj)
Temporal vs. Non-temporal
Model | Sensitivity | Specificity | Precision | Accuracy | F1 | MCC |
---|---|---|---|---|---|---|
CV-KC-AR | 0.92 | 0.99 | 0.99 | 0.99 | 0.95 | 0.95 |
CV-GP-AR | 0.82 | 0.99 | 0.97 | 0.97 | 0.89 | 0.88 |
CV-EMVS-AR | 0.96 | 0.99 | 0.93 | 0.98 | 0.94 | 0.93 |
CV-KC | 1 | 0.79 | 0.47 | 0.82 | 0.63 | 0.61 |
Temporal vs. Non-temporal
Spatial vs. Non-spatial
Model | Sensitivity | Specificity | Precision | Accuracy | F1 | MCC |
---|---|---|---|---|---|---|
CV-KC | 0.79 | 0.99 | 0.99 | 0.97 | 0.87 | 0.86 |
CV-GP | 0.58 | 0.99 | 0.99 | 0.93 | 0.73 | 0.72 |
CV-EMVS | 0.66 | 0.99 | 0.92 | 0.94 | 0.77 | 0.75 |
KC
ψv∣∣Svind∼Bernoulli(11+e−Sv)
Sv=D∑d=1k(zv−sd;ϕ)wd
GP
ψvj∣∣Sgjind∼Bernoulli(11+e−Sgj)
It matters because ...
Model | 16 | 25 | 100 |
---|---|---|---|
CV-KC | 0.51 | 0.59 | 1.48 |
CV-GP | 0.30 | 0.41 | 3.36 |
If a spatial region contains true activated voxels, other nonactivated voxels in the region will also have relatively high probability of activation ⟹ increases false positives.
CV
MO
Sv=D∑d=1kc(zv−sd;ϕc)wd+H∑h=1kf(zv−sd;ϕf)bh
Complex-valued modeling improves activation.
CV-EMVS and CV-KC-AR are computationally efficient.
Spatial models encourage activation in clusters.
The MO models need a sophisticated spatial structure to reach good performance as CV models.
The KC models are flexible and outperform the baseline GP models.
[1] M. Karaman, I. P. Bruce, and D. B. Rowe. "Incorporating relaxivities to more accurately reconstruct MR images". In: Magnetic Resonance Imaging 33 (2015), pp. 374-384.
[2] D. B. Rowe and B. R. Logan. "A complex way to compute fMRI activation". In: NeuroImage 23 (2004), pp. 1078-1092.
[3] J. Xia, F. Liang, and Y. Wang. "FMRI analysis through Bayesian variable selection with a spatial prior". In: Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Boston, MA, USA, 2009, pp. 714-717.
[4] C. Yu, R. Prado, H. Ombao, et al. "A Bayesian variable selection approach yields improved detection of brain activation from complex-valued fMRI". In: Journal of American Statistical Association: Applicaiton and Case Studies 113 (2018), pp. 1395-1410.
[5] C. Yu, R. Prado, H. Ombao, et al. "Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions". In: Biometrics (2022), pp. 1-13.
[6] L. Zhang, M. Guindani, and M. Vannucci. "Bayesian models for fMRI data analysis". In: WIREs Computational Statistics 7 (2015), pp. 21-41.
[7] L. Zhang, M. Guindani, F. Versace, et al. "A spatio-temporal non-parametric Bayesian model of multi-subject fMRI data". In: Annals of Applied Statistics (2016).
Source: Martha Skup (2010)
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |